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Impulsively started, time-dependent inviscid transonic flows past a circular cylinder 
are considered for the case of a symmetric flow of an ideal compressible gas. A finite- 
difference method is applied to an annular region between the cylinder and the gasdynam- 
ic discontinuity created by a sudden immersion of the cylinder into the uniform stream. 
Numerical solutions are presented for the transonic free stream. A discussion of factors 
affecting the accuracy is given. It is concluded that imbedded shocks, if present, must be 
treated as discontinuities in order to maintain a reasonable accuracy. 

INTRODUCTION 

Recent years witnessed a rebirth of interest in transonic aerodynamics. Mathe- 
matical difficulties connected with an analytical treatment of the problem continue 
to hinder the progress in computation of transonic flows. As a natural consequence, 
many researchers turned to numerical methods. The experience, gained in the 
numerical solution of the supersonic blunt body problem during the last decade, 
proved valuable in attacking the related problem of the transonic flow, both 
problems being governed by mixed-type equations in the steady case. It is, therefore, 
not surprising that a method originally developed for the supersonic blunt body 
flows, e.g., the method of integral relations [l], was used with success by Chushkin 
in solving the problem of a sonic flow past cylinders [2]. The difficulty of obtaining 
numerical solutions for Mach numbers less than unity, but higher than the 
critical value, was overcome recently with finite-difference time-dependent methods 
by Singleton [3], and by Magnus, Gallaher and Yoshihara [4]. The common 
feature of the finite-difference solutions is that they could be applied to a well-posed 
initial-value problem for the time-dependent case. However, the central difficulty 
arising in calculations of unconfined flows is the proper imposition of the boundary 
conditions at infinity. Artificial conditions, corresponding to fixed, permeable, 
subsonic boundaries at a finite distance from the body, render the problem 
ill-posed. 
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Recently the author has formulated a general problem of computing impulsively 
started, external flows on an infinite domain [5]. Starting with the premise that 
the natural external boundary of a flow disturbed by a body suddenly immersed 
in it is a gasdynamic discontinuity propagating outwards from the body, it is 
sufficient to calculate the time-dependent solution only on the inside of the annular 
region between the body and the outward-moving disturbance. The motion of 
the latter is governed by the exact Rankine-Hugoniot jump conditions. The 
annular domain of integration remains finite in extent for all times less than infinity. 

NUMERICAL METHOD 

The details of the method will be published separately [5]. For completeness, 
the main features of the method are discussed briefly here. The task is to integrate 
numerically the partial differential equations of gasdynamics with respect to time 
over the annular region between the cylinder of radius R and the moving gas- 
dynamic discontinuity, subject to initial and boundary conditions. The system of 
equations considered is 

ap=- uap+v ap 
at [ ad 7&7+P(g++)]7 

a24 au -=- u- 
at [ ad +v ay’ *+j+], 

a0 au -=- u- 
at I ai +’ af “+;$-I, 

ap 
at = - I 

aP u-fv ad -g + YP ($$ + 7&)], 

(la) 

(14 

where the dependent variables are p = density, u, v = Cartesian components of 
velocity, p = pressure. Here y = constant ratio of specific heats. Note that no 
assumption is made as to the constancy of entropy. Further, the temperature, 
energy, entropy, and other functions of interest are expressible in terms of the 
dependent variables through appropriate defining relations and need not be 
considered here. 

Since the domain of integration is time-dependent, it is convenient to employ 
a curvilinear, nonorthogonal floating mesh spanning the annular region, Fig. la. 
A computer generated sequence of coordinate transformations maps the floating 
mesh on a rectangular domain, Fig. 1 b, divided into a tied, evenly spaced, 
rectangular mesh of I x J mesh points with coordinates xi , yj , i = 1,2,..., I, 
j = 1, 2,..., J. The sequence of transformations employed mapped the Cartesian 
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coordinates, (x’, y’), first into polar coordinates, (r, 0). The polar radius I was 
then replaced by Q = 1 - R/r, and the modified coordinates (Q, 0) were then 
normalized by referring them to their ranges: x = e/r, y = Q/Qs(fl, t), where 
Qs = 1 - R/t-,(8, t) and Y = rs is the equation of the shock wave. The interior 
boundary (the surface of the cylinder) is given by y = 0, and the exterior boundary 
(the discontinuity) by y = 1, while x = 1 and x = 0 correspond to the axis of 
symmetry upstream and downstream of the cylinder, respectively. 

(a) Physical Plane 

x 
(b) Transformed Plane 

FIG. 1. Notation. 

The Cartesian velocity components, u and V, are not subjected to the coordinate 
transformations. As a consequence, the spatial derivatives appearing in Eqs. (1) 
may be calculated conveniently by the Chain Rule of differentiation coded as a 
subroutine. The sequence of transformations of coordinates may be generated 
numerically by, first, storing proper numerical values of the elements of the 
transformation tensor, then calling the subroutine, and repeating the process a 
desired number of times. Al1 the finite-difference approximations of spatial 
derivatives are applied in the transformed plane on the rectangular, equally 
divided mesh. The temporal derivatives are then available by a numerical evaluation 
of the right sides of Eqs. (1). 
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The choice of a particular finite-difference approximation is of no great 
consequence in a preliminary numerical study such as the present one provided 
that the chosen finite-difference scheme is consistent and stable. Because of the 
interest of the author in the role of truncation errors and in the fluid-mechanical 
interpretation of their influence on the numerical solution, it was decided to 
employ the following set of finite-difference expressions: 

g = [f:;l - f;;lJ/2At + gzj, 

z = [f&+1 - fL-,lPAy, 

where f is any one of the dependent variables: u, v, = velocity components, 
p = pressure, p = density, and where the notation: 

flj = f(xi , yj, t,J = f(idx, .UY, nAt) 

is used. For the purpose of controlling the amount of numerical dissipation, 
the following expression was used for gzj : 

where u is a weight factor treated as an arbitrary function of position or time. 
The above finite-difference scheme results from taking a weighted average of 
stable dissipative and nondissipative schemes. Linear stability analysis leads to the 
well-known Courant-Friedrichs-Lewy stability criterion provided that 0 < u < 1. 
Maximum numerical dissipation, as measured by truncation errors of second 
order, is present when u = 1 and the dissipation is zero when u = 0. In the 
latter case, only a marginal (neutral) stability is realized. In practice, one is limited 
to the range 0.01 < u < 1. 

The following boundary conditions must be imposed on the solution: 

I. tangency of the flow at the cylinder surface, 
2. symmetry conditions on the axis of symmetry, 
3. the Rankine-Hugoniot jump conditions on the moving discontinuity. 

Special care was exercised in treating the boundary conditions on the body 
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and on the shock wave. The original ideas of Moretti [6], who first suggested 
treating finite-difference approximations of boundary conditions “in the spirit of 
the theory of characteristics,” were used also in the present case. 

Initial conditions were chosen so as to satisfy the boundary conditions and 
to represent a physically realistic yet simple impulsive starting of the flow. Taking 
the initial position of the discontinuity (the outer boundary) to be a circle concentric 
with the cylinder and of only slightly larger radius, it was assumed that fluid 
particles in front of the cylinder could move only in a direction tangential to the 
surface of the cylinder. Requiring that the discontinuity be a shock wave which 
leaves behind a velocity with zero component normal to the cylinder surface 
and using the Rankine-Hugoniot jump conditions, pressure, density and tangential 
component of velocity at the shock as well as the speed of the discontinuity were 
determined uniquely. Assuming that the density and velocity remain constant 
across the annulus between the body and the shock wave, integration of the 
conservation equation for the normal component of momentum gave a pressure 
distribution between the shock and the body. As a consequence, realistic conditions, 
corresponding in concept to the hypersonic Newtonian shock layer, were arrived 
at in front of the body. Further, assuming that fluid particles behind the cylinder 
continue to move with free stream velocity in the downstream direction until 
overtaken by an expansion wave, it was found sufficient to initiate the expansion 
by modifying only the velocity distribution at the cylinder surface where the 
velocity component normal to the surface was set equal to zero and the tangential 
component was set equal to the projection of the free stream velocity onto the 
surface. Since the discontinuity downstream of the body produced no change 
in flow conditions, its speed was set equal to the speed of an acoustic wave. The 
above procedures for the determination of convenient initial conditions in front 
and behind the cylinder are compatible with each other at the top of the cylinder 
and yield free stream conditions at the body and along the radial line up to and 
including the discontinuity which propagates upwards with the speed of sound. 

The weighted sum (a linear combination) of dissipative and nondissipative 
schemes used allowed for local control of the numerical accuracy. As it may be 
shown easily, the leading term in the expression for the truncation error is 
introduced by the finite-difference expressions for the temporal derivatives. This 
term is in each of the Eqs. (1): 

adt a2f 1 - - - 2 [(Ax/At)2 -g + (4m2 $]I, 
2 I at2 

where f = p, u, v, or p. It was found in practice that the weight factor cr could 
be kept as low as a = 0.01 reducing the truncation error of the first order accuracy 
scheme by a factor of 100. However, the appearance of imbedded recompression 
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shocks in the transonic case caused rather severe oscillations of the solution. 
This was partially remedied by increasing the weight factor u locally. Since 
schemes of higher (e.g., second) order accuracy also have a tendency to produce 
oscillations in presence of shock waves, the attempts at improving numerical 
accuracy were postponed until techniques are developed for handling imbedded 
shocks as surfaces of discontinuity. 

The stability of numerical solutions, safe for occasional rapid growth of errors 
accumulated at the outer boundary, was maintained by observing the Courant- 
Friedrichs-Lewy linear stability criterion. For the present scheme on a floating 
mesh the following was used in arriving at a safe time step 

At = l/{umax[(l/dx’)2 + (l/dy’)2]1/2}, 0.01 < (T < 1.00, 

where Urnax = [(u - urn)2 + (u - u,)2]1/2 + a - maximum speed of propagation - 
of acoustic disturbances relative to the floating mesh, and where u, , urn are the 
Cartesian components of velocity of the floating mesh at the point in question, 
and a is the adiabatic speed of sound. 

NUMERICAL EXAMPLES 

To aid in interpreting enclosed figures, we first note some common features 
of all late-time flows (excluding initial transients). Independently of the free-stream 
Mach number, the Mach number contour maps covering the annular region 
between the outward-moving discontinuity and the body may be divided into 
three zones by passing M = A4, = constant lines between the body and the shock. 
On the body, there are two points where the local Mach number is equal to the 
free-stream Mach number, M, . The Mach number at the shock wave must be 
less than M, in front of the body, larger than &f, above and downstream from 
the body, and equal to A4, on the axis in the wake region (unless numerical 

FIG. 2. Common features of constant Mach number contour maps (schematic). 

581/6/2-z 
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dissipation and/or the presence of secondary shocks produce substantial entropy 
wake behind the cylinder). Thus, in front of the body we have a zone with 
M < A4, , denoted by (l), Fig. (2), above and downstream of the body we have a 
zone with M > M, , denoted by (2), and in the wake region a zone with M < M, 
occurs again and is denoted by (3). 

Conventional definitions of a transonic free stream lose their meaning when 
blunt bodies and time-dependent flows are considered. Unlike pointed bodies, 
blunt bodies will generate flows containing zones in which local velocities, relative 
to the body, will remain always smaller in magnitude than the local speed of 
sound. This must certainly be true near the front and rear stagnation points. 
The presence, or absence, and the spatial extent of a zone of supersonic flow 
may be used to distinguish between subsonic, transonic and supersonic flow. 
Consequently, we shall adopt in the sequel the following definition of transonic 

X/R 

FIG. 3. Mach number contours, M = 0.10, tV/R = 1.8. 

flows. By a transonic flow we shall mean a flow with the free-stream Mach number, 
relative to the body, such that in the limit of a steady flow there exist supersonic 
velocities confined to a local zone (or zones) of finite extent. Subsonic flows will 
be defined as flows with free-stream Mach number such that no imbedded 
supersonic zones exist in the limit of infinite time. By supersonic flow we shall 
mean a flow with a free-stream Mach number sufficiently high so that zones of 
supersonic flow extend between the body and the exterior boundary completely 
separating the front and rear subsonic zones in the limit as the exterior boundary 
is removed to infinity. The above definitions adopted here limit transonic flows 
proper to the range between the critical Mach number and M, = 1. Supersonic 
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FIG. 4. Mach number contours, A4 = 0.999, tU/R = 5.5. 
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FIG. 5. Mach number contours, A4 = 1.50, tU/R = 8.9. 
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flows, as defined above, are characterized by the inability of acoustic signals, 
emanating from the neighborhood of the rear stagnation point, to travel upstream 
and influence the flow near the front stagnation point. 

In subsonic flows an almost symmetric Mach number contour map results, 
Fig. (3) indicating small drag. The flow is almost steady and isentropic in the 
neighborhood of the body so that constant Mach number lines are also, approxi- 
mately, the lines of constant pressure and density. When the local Mach number 
exceeds unity on the body, the symmetry is destroyed due to the overexpansion 
of the flow, Fig. (4). In transonic flow, M, < 1, the sonic line is located in Zone 2. 
An almost sonic flow, M, = 0.999, is shown in Fig. (4). At AY, = 1 the sonic 

REYNOLDS NF. = 200.513 

FLOW PFiST Fi CIRCULQR CYLINDER 
MACH NUMBER = -100 , TIME q 1.830 

FIG. 6. Instantaneous streamlines, A4 = 0.10, tU/R = 1.8. 

line is the dividing line between Zone 1 and 2. When supersonic flow is reached, 
the sonic line moves to Zone 1, Fig. (5). 

The appearance of imbedded recompression shocks in the transonic and 
supersonic cases is not too obvious due to strong “smoothing” effects of the 
numerical dissipation. A better indication of the presence of shock waves is 
provided by constant stream function lines in Figs. (6)-(9). The stream function 
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does not satisfy the mass continuity equation due to a nonstationary character 
of the flow. However, the instantaneous streamlines (lines of constant mass flow) 
are tangent to the instantaneous velocity field. Consequently, sudden changes in 
the direction of the “streamlines” signal the presence of the recompression shock. 
No attempt was made to improve the numerical resolution of the imbedded 
shock waves. 

REYNOLDS NO. = 7160.874 
FLOW PFlST fl CIRCULFIR CYLINDER 

MKH NUMBER= .500 , TIME = 6.315 

l.klO 
X/R 

3-b Y.DJl 

FIG. 7. Instantaneous streamlines, M = 0.50, tlJ]R = 6.3. 

The case il.4 = 0.999 illustrates both the generality and the limitations of the 
present formulation. Due to the fact that the solution must depend continuously 
on the boundary conditions, in particular on the Mach number, the solution for 
M = 0.999 has the same general features as supersonic and lower subsonic 
solutions. The primary limitation of the present solutions is their admittedly 
poor accuracy. The preliminary results reported here will serve, it is hoped, to 
point out where improvements in the method could be made in order to achieve 
satisfactory accuracy. 

Figures 10 and 11 illustrate the convergence of numerical results with respect 
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to the mesh size and with respect to time (or number of integration steps). For 
the first 500 integration steps, 18 equal subdivisions were used along the upper 
surface of the cylinder; and only five unequal subdivisions were employed between 
the cylinder and the moving discontinuity. When the number of integration 
steps, N, exceeded 500, a finer mesh of 10 radial and 54 angular subdivisions 
was used. The sudden reduction of the mesh size lowered the numerical dissipation 

FLOW PQST Q CIRCULQR CYLINDER 
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MQCH NUMBER = .999 , TIME = 5.499 

---- SONIC LINE 
, 

I 

FIG. 8. Instantaneous streamlines, M = 0.999, tU/R = 5.5. 

by a factor of 3.16. The velocity distribution, Fig. 10, responded to this change 
by quickly approaching a new asymptote. The difference between velocity 
distribution at N = 600 and N = 700 is small. Further improvement in accuracy 
could be attained not so much by integrating for many more hundreds of cycles 
as by increasing the number of subdivisions or by allowing for a discontinuous 
jump in the velocity at the downstream boundary of the supersonic zone. Figure 11 
shows the distribution of the exponential function of entropy. An almost constant 
value of entropy prevails over most of the surface until the expected position 
of the recompression shock is approached. Oscillations upstream of the high 
entropy region are characteristic of the truncated Fourier series representation 
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RG. 9. Instantaneous streamlines, M = 1.50, NJ/R = 8.9. FIG. 9. Instantaneous streamlines, M = 1.50, NJ/R = 8.9. 
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FIG. 10. Velocity distribution as a function of the number of integration steps, N; A4 = 0.999. 
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of discontinuous functions. A higher numerical dissipation used in the neighbor- 
hood of the rear stagnation point smoothed out the oscillations in the high entropy 
region, but the characteristic overshot at the discontinuity is clearly visible. The 
fact that the entropy at the front stagnation point is not equal to the free stream 
value may be explained by the presence of the discontinuity (moving shock wave) 
in front of the cylinder. At M = 0.999 the discontinuity moves in the upstream 
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FIG. 11. Entropy distribution on the surface of a circular cylinder as a function of the number 
of integration steps, N; M = 0.999. 

direction with a small velocity which diminishes with time at a very slow rate. 
The shock strength also decreases slowly with time. Consequently, some improve- 
ment in accuracy could be realized by carrying out the integration to larger values 
of time. The condition of the constancy of entropy was not imposed on the system 
of equations of motion and, therefore, the calculated entropy provides a convenient 
indication of the accuracy of the solutions. Further, the behavior of entropy is 
a good indication of the presence or absence of imbedded shocks in the flow field. 

DISCUSSION AND CONCLUSIONS 

We first observe that it is quite feasible to obtain reasonably accurate solutions 
to impulsively started flows on an infinite domain using a rather coarse mesh 
(a maximum of 10 x 54 mesh points was used). The settling of the flow to a 
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steady-state condition is quite rapid in the neighborhood of the body. As a con- 
sequence of a properly-posed initial-boundary value problem for the hyperbolic 
system of equations of gasdynamics, the family of solutions for a given body is a 
continuous function of the free-stream Mach number. 

The accuracy of the solution may be increased by employing a much finer 
mesh. However, the gain in accuracy will not be commensurable with the 
computing effort expended. The truncation errors of the first-order scheme 
employed here were reduced to a minimum by using the weight factor u equal 
to 0.01 (except in the neighborhood of the shock). Further reduction of the 
truncation errors results in a trade-off between the accuracy and stability without 
any improvement in the reliability of the solution. Second-order schemes often 
need artificially added stabilizing terms which give rise to errors of comparable 
magnitude. The truncation errors manifest themselves in the phenomenon of the 
“numerical dissipation” and as such will have an insignificant influence except 
in regions where second derivatives of the dependent variables are large. In 
particular, “numerical dissipation” spreads out any gasdynamic discontinuity 
over a length of about 10 mesh points (3-5 mesh points for second-order schemes). 
The presence of imbedded shocks in the transonic flow destroys, therefore, the 
accuracy of the solution. In the case of very thin bodies, such as airfoils, the 
shock will be weak and it may suffice to use a finer mesh locally in the vicinity 
of the expected shock position. The best remedy for the present problem of a 
flow past a circular cylinder would be to introduce a coordinate system such that 
the shock wave would coincide with a coordinate line. The Rankine-Hugoniot 
conditions would then govern the motion of the discontinuity in the same manner 
as the motion of the external boundary was governed in the numerical examples 
reported here. It is believed that only by treating secondary shocks in the flow 
field as gasdynamic discontinuities would it be possible to answer with certainty 
the question whether shock-free transonic flows are possible or not, and whether 
or not a shock wave assumes a stable position in the absence of a boundary 
layer on a contour with a continuous curvature. 

There remains to comment on the role of a numerical treatment of the boundary 
conditions. A convergent finite-difference scheme conserves mass, momentum and 
energy at internal points with predictable and controllable accuracy. The treatment 
of boundary points is much more critical. Errors at solid boundaries may be 
interpreted as fluxes of mass, momentum and energy which will have an almost 
constant and generally small effect at large distances from the boundary. However, 
an external boundary comprised of a shock will grow with time and any errors 
in determining accurately the large fluxes there will lead to a rapid, almost 
exponential growth of the integrals of mass, momentum, and energy balance. 
This phenomenon, being of a global rather than local nature, was often attributed 
to a “nonlinear instability.” An extensive study of the numerical treatment of 
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shock motion undertaken by the author led to the conclusion that it is of utmost 
importance to describe accurately the mechanism by which the flow behind a 
shock wave determines the shock velocity and, by the Rankine-Hugoniot jump 
conditions, the flow variables on the downstream side of the shock. Thus, it is 
mandatory to construct a finite-difference analog of the compatibility relation of 
the method of characteristics which, together with the jump conditions, determines 
the shock motion uniquely. The overall accuracy of such an analog need not be 
higher than that of the finite-difference scheme used for internal points. 

Applications of compatibility relations of the theory of characteristics and the 
Rankine-Hugoniot jump conditions to a multidimensional shock motion are 
being studied further in an effort to arrive at an exact form of the boundary 
conditions suitable for a convenient discretization. Results of the research will 
be reported at a later date. 
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